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Abstract—During the transition period, the interactions 

between human-driven vehicles (HVs) and autonomous vehicles 

(AVs), especially the car-following behaviors, need to be 

analyzed comprehensively to provide feedbacks to AV 

controllers, increase the inference ability of AVs and reflect the 

social acceptance of AVs. Previous studies have found that HVs 

behave differently when following AVs compared to when 

following HVs through traffic/numerical simulations or field 

experiments. However, these works have critical drawbacks 

such as simplified driving environments and limited sample 

sizes. The objective of this study is to realistically model and 

understand HV-following-AV dynamics and their microscopic 

interactions. An inverse reinforcement learning model (Inverse 

soft-Q Learning) has been implemented to retrieve HVs’ reward 

functions in HV-following-AV events. Then a deep 

reinforcement learning (DRL) approach -- soft actor-critic 

(SAC) is adopted to estimate the optimal policy for HVs 

following AVs. HV-following-AV events from the high-

resolution (10 Hz) Waymo Open Dataset are extracted to 

validate the proposed model. The results show that compared 

with other conventional and data-driven car-following models, 

the proposed model leads to significantly more accurate 

trajectory predictions and gains more insights into HVs’ car-

following behaviors. 

I. INTRODUCTION 

N recent years, the technologies of autonomous 

vehicles (AVs) have been tested through a variety of 

approaches, including traffic microsimulation tools, 

numerical simulations, dedicated test tracks and field trials on 

public roads. It is generally acknowledged that before the 

mobility is fully automated, there will be a transition period 

when the traffic flow is composed of both AVs and human-

driven vehicles (HVs) [1]. When sharing the road with AVs, 

human drivers may behave differently as compared to when 

sharing the road with only HVs. They may take advantage of 

AVs due to over-trust on them, or drive more conservatively 

if they have low acceptability to AVs. These differences in 

human drivers’ behaviors can significantly affect road safety 

and efficiency and should be taken into account when 

designing AV control algorithms [2]. However, 

understanding of the fundamental mechanisms of such  
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interactions, e.g., how human drivers adapt to the new driving 

environments when following AVs, is still yet to be 

investigated. 

The mechanisms behind the interactions between AVs and 

HVs have not been studied comprehensively due to the lack 

of empirical data as a result of the low AV market penetration 

rate [2]. Previous research about the effects of AVs on the 

mixed traffic flow usually adopted traffic/numerical 

simulations or field experiments, both of which can make the 

reliability of their results questionable due to over-simplified 

traffic characteristics and vehicle interactions in their 

simulation settings or experiment designs [3]. Nowadays, 

more and more AV tech firms such as Waymo and Lyft have 

released high-resolution real-world datasets collected by the 

sensors mounted on their AV fleets at 10-Hz frequency. These 

datasets include abundant information about not only the AVs 

but also the surrounding traffic, which provides the 

transportation research community with new opportunities to 

investigate on human drivers’ behavioral adaptions when 

interacting with AVs in real-world. 

Imitation learning (IL) approaches have been frequently 

implemented to learn the underlying patterns from the human 

demonstrations and generate an optimal policy which behaves 

similarly to those experts [4]. Main IL approaches include 

behavior cloning (BC) and inverse reinforcement learning 

(IRL). BC directly learns a function mapping from states to 

actions which turns IL into a supervised learning problem. 

However, BC may cause the so-called “cascading errors” 

problem since small predictive errors will compound and lead 

the policy to invalid or unseen situations ultimately. Previous 

IRL methods such as generative adversarial imitation learning 

(GAIL) [5] and adversarial inverse reinforcement learning 

(AIRL) [6] use the adversarial training technique which learns 

the reward and policy functions separately and train these two 

jointly in a min-max game. However, the adversarial training 

makes these methods sensitive to hyperparameter choice or 

minor implementation details, thus affects their performance 

adversely. 

To tackle the above issues, the inverse soft-Q Learning (IQ-

Learn) algorithm [7] has been introduced. IQ-Learn is a novel 

IRL method that estimates only the Q-function, representing 

both reward and policy. Therefore, the min-max problem in 

GAIL and AIRL can be converted to a simple minimization 

problem over the Q-function, which enables IQ-Learn to 

achieve state-of-the-art results in IL settings. This study aims 
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to imitate human drivers’ trajectories when following AVs on 

highways and recovering their reward functions using IQ-

Learn along with a deep reinforcement learning (DRL) 

approach -- soft actor-critic (SAC). In summary, the main 

contributions of this paper are listed as follows: 

1) We apply an IRL approach – IQ-Learn to model 

human drivers’ behaviors when following AVs. 

Instead of based on the data collected from 

microsimulation or field experiments, this study 

extracts the HV-following-AV events from the real-

world dataset collected by AVs on public roads. We 

demonstrate that IQ-Learn can achieve higher 

predictive accuracy compared to conventional and 

data-driven car-following models and former IRL 

methods. 

2) We use the IQ-Learn algorithm to extract reward 

functions of human drivers in car-following events 

and identify human drivers’ preferred states (i.e., 

speed, spacing and relative speed) when they are 

behind AVs. The knowledge can be used for AV tech 

firms to infer the following human drivers’ 

behaviors and improve the performance of their AV 

controllers. 

The paper is organized in the following manner. The next 

section briefly reviews relevant studies using IL to model 

human driver behaviors. Sections III presents the 

methodologies and data sources used in this study. Sections 

IV discusses the recovered reward functions and the 

performance of the proposed model in reproducing car-

following behaviors. Finally, Section V provides the 

conclusions and recommendations for future research. 

II. RELATED WORK 

Among a great deal of literature on modelling car-

following behaviors, popular approaches include physics-

based models and data-driven models. However, the physics-

based models may show poor predictive performance 

especially in highly complex environments. For data-driven 

models, machine learning (ML)-based models may fail due to 

large, stochastic and continuous state space of the car-

following problem and reinforcement learning (RL)-based 

models are difficult to craft the reward functions to perfectly 

encode human drivers’ desired behaviors. 

In recent years, applying IL methods to inferring optimal 

sequential policies from human demonstrations has been in 

the spotlight. [4] applied GAIL to the task of modeling human 

driver behaviors on the simulation platform where expert 

demonstrations were retrieved from the NGSIM dataset. They 

identified that compared to earlier IRL methods, GAIL has 

many outstanding properties, such as emergent driving 

behaviors and assigning high likelihood to expert actions. In 

another study, [8] combined GAIL and Parameter Sharing 

Trust Region Policy Optimization (PS-TRPO) to enable IL in 

the multi-agent setting. Experiment results showed that 

compared to the existing single-agent models, the multi-agent 

model generated significantly more realistic behavior, 

particularly over longer time horizons. Later, [9] modeled 

human driver heterogeneity by incorporating a social 

preference value (SVO) into one agent’s reward functions. 

SVO improved the model predictive performance by 

quantifying the degree of an agent’s selfishness or altruism. 

An IRL algorithm was trained for the AV to observe HVs, 

estimate their SVOs, and generate a control policy in real 

time. A reward function-based driver model that imitated 

human’s decision-making mechanisms was proposed in [10]. 

They assumed that human driver behaviors consist of three 

processes, namely trajectory generation, trajectory 

evaluation, and trajectory selection. This setting converted the 

continuous behavior modeling problem to discrete space, thus 

made maximum entropy inverse reinforcement learning (IRL) 

tractable to learn reward functions. 

In general, most of the studies focused on emulating 

interactions within human drivers or learning the expert 

policy from human demonstrations for AVs. However, 

studies found that human drivers may adapt to the new driving 

environments when following AVs [3], which highlights the 

necessity to evaluate drivers’ behavior adaptation. IRL, which 

assumes that the expert follows an optimal policy with respect 

to an unknown reward function, can be used as a promising 

approach to studying HV-AV interactions. 

III. METHODOLOGY 

A. Problem Formulation 

In HV-following-AV events, the driver state 𝑠𝑡 at time step 

𝑡  is described by the features including: the speed of the 

following vehicle 𝑉𝑛(𝑡), the inter-vehicle spacing 𝑆𝑛−1,𝑛(𝑡) 

and the relative speed between the following and the lead 

vehicles ∆𝑉𝑛−1,𝑛(𝑡) . The action 𝑎𝑛(𝑡)  is defined as the 

longitudinal acceleration of the following vehicle. The 

simulation environment initializes HVs and AVs with 

information about their initial positions and speed. At time 

step 𝑡 , the action taken by the HVs is sampled from the 

learned optimal policies. Then the state will be calculated 

using Newtonian equations of motion as follows: 

 

 𝑉𝑛(𝑡 + 1) = 𝑉𝑛(𝑡) + ∆𝑇 ∗ 𝑎𝑛(𝑡) (1) 

 ∆𝑉𝑛−1,𝑛(𝑡 + 1) = 𝑉𝑛(𝑡 + 1) − 𝑉𝑛−1(𝑡 + 1) (2) 

𝑆𝑛−1,𝑛(𝑡 + 1) = 𝑆𝑛−1,𝑛(𝑡) − ∆𝑇 ∗
∆𝑉𝑛−1,𝑛(𝑡)+∆𝑉𝑛−1,𝑛(𝑡+1)

2
(3) 

 

where ∆𝑇 is the simulation time interval (0.1𝑠), which is the 

data collection interval; 𝑉𝑛−1(𝑡 + 1)  is the speed of the 

leading vehicle which is considered known over time. 

The training process of one car-following event is set as an 

episode in this study. When a traffic crash happens (i.e., 

𝑆𝑛−1,𝑛(𝑡) ≤ 0) or the simulation reaches the maximum time 

step, the state will be re-initialized using the next car-

following event data. 

B. Baselines 

The performance of IQ-Learn is compared to four baseline 

models, including a physics-based car-following model (i.e., 
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Intelligent driver model (IDM)), a data-driven model (i.e., 

Long short-term memory (LSTM) neural network), and two 

IRL models (i.e., GAIL and AIRL). These baseline models 

are described as below. 

Intelligent driver model (IDM): The IDM [11] was 

originally proposed to model highway bottleneck 

congestions. IDM shows collision-free dynamics and 

implements smooth transitions between acceleration and 

deceleration. The acceleration/deceleration generated by IDM 

considers both the desired speed and the desired distance, 

which is presented in the following equation: 

 

𝑎𝑛(𝑡) = 𝑎𝑚𝑎𝑥
(𝑛) (1 − (

𝑉𝑛(𝑡)

𝑉𝑛̃(𝑡)
)
𝛽

− (
𝑆𝑛̃(𝑡)

𝑆𝑛(𝑡)
)2) (4) 

 

where 𝑎𝑚𝑎𝑥
(𝑛)

 is the maximum acceleration/deceleration of the 

following vehicle; 𝑉𝑛(𝑡) is the speed of the following 

vehicle; 𝑉𝑛̃(𝑡) is the desired speed; 𝑆𝑛(𝑡) is the spacing 

between the two consecutive vehicles; 𝛽 is the parameter 

which is usually fixed at 4. 

The desired spacing 𝑆𝑛̃(𝑡) is given by: 

 

𝑆𝑛̃(𝑡) = 𝑆𝑗𝑎𝑚
(𝑛) +max⁡(0, 𝑉𝑛(𝑡)𝑇𝑛̃(𝑡) +

𝑉𝑛(𝑡)∆𝑉𝑛(𝑡)

2√𝑎𝑚𝑎𝑥
(𝑛)

𝑎𝑐𝑜𝑚𝑓𝑜𝑟𝑡
(𝑛)

)(5) 

 

where 𝑆𝑗𝑎𝑚
(𝑛)

 is the minimum spacing at standstill; 𝑇𝑛̃(𝑡) is the 

desired time headway; ∆𝑉𝑛(𝑡) is the relative speed; 𝑎𝑐𝑜𝑚𝑓𝑜𝑟𝑡
(𝑛)

 

is the comfortable deceleration. 

Long short-term memory (LSTM) neural network: 

Similarly, the inputs of the LSTM consist of the following 

vehicle speed, spacing and relevant speed at time step 𝑡. The 

output is the longitudinal acceleration of the following vehicle 

at the next time step. The state for the next step will be 

updated accordingly. The objective function for the LSTM 

model is described as follows: 

 

𝐶(𝑊,𝐵) =
(𝑆𝑛−1,𝑛(𝑡)−𝑆𝑛−1,𝑛

𝑜𝑏𝑠 (𝑡))2

(𝑆𝑛−1,𝑛
𝑜𝑏𝑠 (𝑡))2

  (6) 

 

where 𝑆𝑛−1,𝑛(𝑡) is the simulated spacing at time step 𝑡, and 

𝑆𝑛−1,𝑛
𝑜𝑏𝑠 (𝑡) is the observed spacing at time step 𝑡 ; W and b 

represent the weights and biases in the LSTM model. The 

LSTM model gradually minimizes the objective function by 

back-propagating a small update through time in the direction 

of optimizing the weights and biases [12]. 

Generative adversarial imitation learning (GAIL): [5] 

proposed GAIL which solves the IL problem by matching the 

state-action occupancy distribution of the expert policy. A 

discriminator (𝐷𝜓) parametrized by 𝜓 is trained to learn to 

distinguish whether a trajectory is from the expert 

demonstrations (𝜋𝐸) or synthetic demonstrations generated by 

the policy (𝜋𝜃). The policy (𝜋𝜃) parameterized by 𝜃 is trained 

to generate synthetic trajectories to “fool” the discriminator 

(𝐷𝜓). The objective function of GAIL is formulated as a min-

max game between the discriminator (𝐷𝜓 ) and the policy 

(𝜋𝜃): 

 

min
𝜃
max
𝜓

𝐸𝜋𝐸[𝑙𝑜𝑔𝐷𝜓(𝑠, 𝑎)] + 𝐸𝜋𝜃[𝑙𝑜𝑔(1 − 𝐷𝜓(𝑠, 𝑎))](7) 

 

In order to fit 𝜋𝜃 , a surrogate reward function can be 

calculated as: 

 

𝑟̃(𝑠𝑡 , 𝑎𝑡; 𝜓) = −log⁡(1 − 𝐷𝜓(𝑠𝑡, 𝑎𝑡)) (8) 

 

As the state-actions pairs (𝑠𝑡 , 𝑎𝑡) sampled from 𝜋𝜃 become 

more and more similar to the elements sampled from 𝜋𝐸, the 

value of the reward function will increase. After performing 

rollouts, surrogate reward function 𝑟̃(𝑠𝑡 , 𝑎𝑡; 𝜓) is calculated 

and proximal policy optimization (PPO) is used to update the 

policy parameters. 

Adversarial inverse reinforcement learning (AIRL): 

Based on Guided Cost Learning (GCL) and adversarial 

training, [6] proposed AIRL, an efficient sampling-based 

approximation to Maximum entropy inverse reinforcement 

learning (MaxEnt IRL). The discriminator (𝐷𝜓) parametrized 

by 𝜓 is formulated as the follows: 

 

𝐷𝜓(𝑠, 𝑎) =
𝑒𝑥𝑝(𝑓𝜓(𝑠,𝑎))

exp(𝑓𝜓(𝑠,𝑎))+𝑞𝜃(𝑎|𝑠)
  (9) 

 

where 𝑓𝜓(𝑠, 𝑎) is the learned function and trained to infer 

the reward function; 𝑞𝜃(𝑎|𝑠) is the probability of the adaptive 

sampler and trained to minimize the Kullback-Leibler (KL) 

diverge between the trajectory distribution induced by the 

reward function and that generated by the policy (𝑞𝜃). 

The discriminator (𝐷𝜓) and the policy (𝑞𝜃) are trained to 

maximize the objective functions given by Eqs. (10) and (11): 

 

max
𝜓

𝐸𝜋𝐸 [𝑙𝑜𝑔𝐷𝜓(𝑠, 𝑎)] + 𝐸𝑞𝜃[𝑙𝑜𝑔(1 − 𝐷𝜓(𝑠, 𝑎))] (10) 

max
𝜃
𝐸𝑞𝜃 [𝑙𝑜𝑔𝐷𝜓(𝑠, 𝑎) − 𝑙𝑜𝑔(1 − 𝐷𝜓(𝑠, 𝑎))] (11) 

 

𝑓𝜓 is further decomposed to a reward estimator 𝑔𝜓 and a 

potential function ℎ∅: 

 

𝑓𝜓,∅(𝑠, 𝑎, 𝑠
′) = 𝑔𝜓(𝑠, 𝑎) + 𝛾ℎ∅(𝑠

′) − ℎ∅(𝑠) (12) 

 

where 𝜓  and ∅  are parameters trained to maximize the 

objective functions of the discriminator (𝐷𝜓) in Eq. (10); 𝛾 is 

the discount factor. Similarly, PPO is adopted as the policy 

optimization algorithm using the estimated reward function. 

C. IQ-Learn 

Both GAIL and AIRL adopt adversarial training strategy 

and formulate the IRL problem as a min-max game between 

reward and policy, which is sensitive to hyperparameter 

choices or minor implementation details [7]. IQ-Learn is 

capable of learning a single Q-function that represents both 

reward and policy. Hence, the complicated min-max game in 

traditional IRL settings is converted to a simple minimization 

problem over the Q-function. The pseudocode is presented in 

Algorithm 1. For continuous control, IQ-Learn is built upon a 

DRL algorithm -- soft actor-critic (SAC). The modified actor-

critic update rules include: 
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1) For a fixed policy 𝜋𝜙, optimize the Q-function by 

maximizing 𝒥(𝜋𝜙, 𝑄𝜃) as Eq. (13) shows: 

 

𝒥(𝜋𝜙, 𝑄𝜃) = 𝐸𝜌𝐸 [𝜙 (𝑄𝜃 − 𝛾𝐸𝑆′~𝒫(∙|𝑠, 𝑎)𝑉
𝜋𝜙(𝑠′))] − (1 −

𝛾)𝐸𝜌0[𝑉
𝜋𝜙(𝑠0)]   (13) 

 

2) For a fixed 𝑄𝜃, optimize 𝜋𝜙 by implementing SAC 

update. 

The recovered policy of IQ-Learn is presented in 

Algorithm 2. IQ-Learn recovers the reward functions for each 

transition (𝑠, 𝑎, 𝑠′) using the learned Q-function as follows: 

 

𝑟(𝑠, 𝑎, 𝑠′) = 𝑄(𝑠, 𝑎) − 𝛾𝑉𝜋(𝑠′)  (14) 

 

Algorithm 1 Inverse soft Q-Learning 

1: Initialize an Q-function 𝑄𝜃 and random policy 𝜋𝜙 

2: for step 𝑡 in {1,2,3, …𝑁} do 

3:     Train Q-function using the objective 𝒥(𝜃) from 

Eq. (13): 

𝜃𝑡+1 ← 𝜃𝑡 − 𝛼𝑄∇𝜃[−𝒥(𝜃)] 

4: Improve policy 𝜋𝜙 with SAC style actor critic: 

𝜙𝑡+1 ← 𝜙𝑡 − 𝛼𝜋∇𝜙𝐸𝑠~𝐷,𝛼~𝜋𝜙(∙|𝑠)[𝑄(𝑠, 𝑎)

− 𝑙𝑜𝑔𝜋𝜙(𝑎|𝑠)] 

5: end for 

 

Algorithm 2 Recover policy and reward 

1: Given a trained Q-function 𝑄𝜃 and trained policy 𝜋𝜙 

2: Recover policy 𝜋: 

𝜋 ≔ 𝜋𝜙 

3: For state 𝑠, actions 𝑎 and next state 𝑠′~𝒫(∙ |𝑠, 𝑎) 
4: Recover reward 𝑟(𝑠, 𝑎, 𝑠′) = 𝑄𝜃(𝑠, 𝑎) − 𝛾𝑉

𝜋(𝑠′) 

IV. EXPERIMENT RESULTS 

A. Data Sources 

The car-following events that are used to train the models 

have been extracted from the Waymo Open Dataset released 

by Waymo LLC, in which a fleet of SAE Level 4 vehicles has 

been tested on public roads in the U.S. [13][14]. The Waymo 

Open Dataset is constituted of two parts: the perception and 

motion parts. These two parts both contain high-quality and 

continuous records of road agents’ type, size (e.g., length, 

width and height), position (e.g., latitude and longitude) and 

movement (e.g., speed) at 10-Hz frequency. 

The perception part contains 1,000 20-second video clips, 

each of which is composed of well-synchronized and 

calibrated high-resolution LiDAR and camera data recorded 

in urban and suburban areas [14]. The lidar data contains 

approximately 12 million annotated 3D ground truth 

bounding boxes and the camera data also contains 12 million 

annotated 2D fitting bounding boxes. 

The motion part consists of 103,354 20-second video clips 

representing 574 hours of driving data collected over 1,750 

km of roadways. Similar to the perception part, each clip in 

the motion part contains high-quality 3D ground truth 

bounding boxes for each road user. Compared to the 

perception part, the motion part additionally provides 

corresponding high-resolution maps. 

Considering the sample size of the Waymo Open Dataset, 

timespan of each video clip and sensor detection range, the 

car-following events used in this study must satisfy the 

following criteria: 

1) The leading and following vehicles were driving in 

the same lane on a straight highway segment; 

2) Neither lead vehicle nor following vehicle changed 

lanes in the event; 

3) The spacing distance between the leading and 

following vehicles should be less than 85m; 

4) The following vehicle’s speed should be greater than 

10km/h to exclude traffic congestion scenarios; 

5) The duration of car-following event should be at 

least 15 seconds long. 

A total of 264 HV-following-AV events are extracted from 

the dataset. 

B. Driver Behavior Classification 

In this paper, drivers’ heterogeneous longitudinal 

maneuvering styles are captured by clustering. Critical 

features including maximum speed, minimum speed, speed 

mean, speed standard deviation, acceleration, deceleration, 

spacing, and time headway are used. First, the principal 

component analysis (PCA) is adopted to reduce the dimension 

of the features. Afterwards, the agglomerative hierarchical 

clustering is used to classify the drivers in the HV-following-

AV events. 201 drivers are identified as either non-aggressive 

or aggressive drivers while the remaining 63 drivers belong 

to smaller clusters and are discarded in the subsequent 

analysis. More details on the classification of car-following 

styles can be found in our previous study [3]. Table I 

summarized the statistics of non-aggressive and aggressive 

drivers. It should be noted that the presented values are the 

aggregation and average of vehicular kinematics of 

corresponding human driver groups. For each group of drivers, 

80% of the total car-following events are randomly selected 

for training and the remaining 20% car-following events are 

used for testing. 

TABLE I 

CLUSTERING INFORMATION 

 

Features 
Non-

aggressive 
Aggressive 

maximum vehicle speed (𝑚/𝑠) 12.407 12.153 

minimum vehicle speed (𝑚/𝑠) 8.881 6.288 

Mean vehicle speed (𝑚/𝑠) 10.768 9.025 

Standard deviation of vehicle speed 

(𝑚/𝑠) 
1.019 1.787 

Vehicle acceleration (𝑚2/𝑠) 0.287 0.494 

Vehicle deceleration (𝑚2/𝑠) 0.240 0.471 
Spacing (𝑚) 21.657 14.094 

Time headway (𝑠) 2.745 2.239 
Number of drivers 89 112 

 

C. Performance Comparison 

As suggested by Punzo and Montanino [15], the root mean 

squared percentage error of spacing 𝑅𝑀𝑆𝑃𝐸(𝑆)  and speed 

𝑅𝑀𝑆𝑃𝐸(𝑉) are adopted as the model evaluation metrics: 
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𝑅𝑀𝑆𝑃𝐸(𝑆) = √
∑ (𝑆𝑖

𝑠𝑖𝑚−𝑆𝑖
𝑜𝑏𝑠)2𝑁

𝑖=1

∑ (𝑆𝑖
𝑜𝑏𝑠)2𝑁

𝑖=1

  (15) 

𝑅𝑀𝑆𝑃𝐸(𝑉) = √
∑ (𝑉𝑖

𝑠𝑖𝑚−𝑉𝑖
𝑜𝑏𝑠)2𝑁

𝑖=1

∑ (𝑉𝑖
𝑜𝑏𝑠)2𝑁

𝑖=1

  (16) 

where 𝑆𝑖
𝑠𝑖𝑚 and 𝑉𝑖

𝑠𝑖𝑚 are the ith simulated spacing and speed, 

respectively; 𝑆𝑖
𝑜𝑏𝑠 and 𝑉𝑖

𝑜𝑏𝑠 are the ith observed spacing and 

speed, respectively; 𝑁 is the number of observations. 

D. IQ-Learn Training and Convergence 

For non-aggressive drivers, the IQ-Learn model is trained 

with 120 episodes with each episode representing a car-

following event. During the training process, car-following 

events are fed into the model sequentially. To detect if there 

are overfitting issues, the RMSPE of spacing (𝑅𝑀𝑆𝑃𝐸(𝑆)) 
for the entire training and testing dataset is computed 

whenever a training episode ended. The same training 

strategy is applied to the aggressive drivers with 170 episodes. 

Fig.1 and Fig. 2 show the IQ-Learn training loss and 

𝑅𝑀𝑆𝑃𝐸(𝑆)  of training and testing datasets for non-

aggressive and aggressive drivers, respectively. In Fig.1(a), it 

can be observed that at round 11,000 steps, the training loss 

almost converged to zero. It should be noted that there are 

periodical jumps of the training loss which is attributed to the 

fact that the environment would be re-initialized and the state 

would be changed abruptly at the end of each training episode. 

But one can still observe the overall tendency where the 

training loss kept decreasing and then stabilized. Fig. 1(b) 

shows the model performance improvement in terms of 

𝑅𝑀𝑆𝑃𝐸(𝑆). There is a clear decreasing trend in 𝑅𝑀𝑆𝑃𝐸(𝑆) 
throughout the training process and no significant 

improvement is observed after 85 episodes. Finally, the IRL 

model that generated the smallest sum of training and testing 

𝑅𝑀𝑆𝑃𝐸(𝑆) is selected. The same model selection strategy is 

applied to the aggressive drivers. 

 

 
(a) Track of training loss 

 
(b) Track of RMSPE of spacing 

Fig. 1. Training process for non-aggressive drivers. 

 

 
(a) Track of training loss 

 
(b) Track of RMSPE of spacing 

Fig. 2. Training process for aggressive drivers. 

 

Table II compares the testing performance of IQ-Learn 

model to four baseline models. As can be shown from Table 

II, IQ-Learn outperforms the other algorithms in terms of 

𝑅𝑀𝑆𝑃𝐸⁡(𝑆)  and 𝑅𝑀𝑆𝑃𝐸⁡(𝑉)  for both non-aggressive and 

aggressive drivers. It is noteworthy to mention that from the 

microscopic perspective, there are no perfect car-following 

models that can completely solve the discrepancy between 

observed and simulated data. There are always stochasticity 

or randomness in drivers’ behaviors (i.e., some driver 

behaviors may reveal no perceptible patterns and cannot be 

predicted). 

 

TABLE II 

TESTING RMSPE OF SPACING AND SPEED 

 

 
Non-aggressive Aggressive 

𝑅𝑀𝑆𝑃𝐸⁡(𝑆) 𝑅𝑀𝑆𝑃𝐸⁡(𝑉) 𝑅𝑀𝑆𝑃𝐸⁡(𝑆) 𝑅𝑀𝑆𝑃𝐸⁡(𝑉) 
IDM 0.277 0.070 0.260 0.075 

LSTM 0.321 0.096 0.320 0.140 

GAIL 0.247 0.068 0.278 0.089 

AIRL 0.344 0.082 0.320 0.119 

IQ-Learn 0.202 0.053 0.208 0.073 

 

E. Recovery of Reward Functions 

The reward functions recovered by applying the IQ-Learn 

algorithm are visualized in Fig. 3. The reward functions are 

presented as bivariate feature spaces where the other features 

are held at their mean values. The brighter the color is, the 

higher the reward is. Higher rewards indicate that human 

drivers prefer to stay at corresponding states. The human 

driver behavior preferences can be inferred through the 

recovered reward functions, which can provide insights on 

human drivers’ behaviors when interacting with AVs. It 

should be noted that the inferred behavior preferences based 

on the reward functions are correlated with the mean values 

of the other features, i.e., some HV preferences may differ if 

the values of the other feature change. 
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(a) Non-aggressive drivers  (b) Aggressive drivers 

Fig. 3. Reward functions for HVs following AVs. 

 

For non-aggressive drivers shown one the left side of Fig. 

3 (see Fig. 3(a)), one can observe an obvious decreasing 

tendency of preferred relative speed is associated with the 

acceleration of following human drivers. Especially, if the 

speed of HVs is between 10⁡𝑚/𝑠 to 14𝑚/𝑠, human drivers 

preferred to drive slightly faster (i.e., the relative speed is 

between 0  and 1𝑚/𝑠 ) than the leading AVs. Second, the 

preferred spacing to the lead AVs increased linearly with the 

increase of the HV speed. Furthermore, the increase of the 

spacing resulted in an increased preferred relative speed. This 

is reasonable since the following HVs may need to catch up 

with the lead AVs if the AVs drove away from them. 

One the right side of Fig. 3, Fig 3(b) reveals that aggressive 

drivers preferred to drive at a high speed, ranging from 

12⁡𝑚/𝑠  to 14𝑚/𝑠 , but are 1𝑚/𝑠  to 2𝑚/𝑠  slower than the 

lead AVs. The desired spacing also increased with the 

increment of the following vehicle speed among aggressive 

drivers. When the comparisons are made between non-

aggressive and aggressive drivers, one can identify that the 

latter keeps a shorter spacing distance to the AVs than the 

former given the same speed. Moreover, when the spacing is 

between 7.5m to 12.5𝑚 and the relative speed ranged from 

−0.5𝑚/𝑠 to 1.5𝑚/𝑠, aggressive drivers will get the highest 

rewards, indicating their preferences at corresponding states. 

V. CONCLUSIONS 

In this study, a novel IRL algorithm -- IQ-Learn has been 

proposed to replicate human driver trajectories when 

following AVs on highway segments. The HV-following-AV 

events used in this study are extracted from the real-world 

dataset released by Waymo. Compared to other models such 

as IDM, LSTM, GAIL and AIRL, IQ-Learn exhibits superior 

performance for modeling and reproducing interactions 

between HVs and AVs in terms of 𝑅𝑀𝑆𝑃𝐸(𝑆)  and 

𝑅𝑀𝑆𝑃𝐸(𝑉). Moreover, the reward functions based on the IQ-

Learn algorithm display the preferences of human drivers 

when following AVs. 

Several research directions worth further investigation. 

First, it would be an opportunity to compare the reward 

functions of HV-following-AV and HV-following-HV 

events. Second, it would be interesting to investigate the 

effects of AVs on HVs’ following trajectories in more 

complicated scenarios. Third, apart from car-following, other 

interactions between HVs and AVs need to be examined. 
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